AAM/UAM Research at USF

Yu Zhang, PhD, Professor Smart Urban Mobility Laboratory

Future of Aviation San Francisco, August 4, 2022

Smart Urban Mobility (SUM) Lab at USF

- Shared Micromobility, Ridesourcing, and Shared Automated Vehicles: Efficient and Equitable Micromobility Program Design and Evaluation; Impacts of Shared AV; Multimodal Connections with Emerging Technologies and Business Models; Learning-based prediction of demand of different modes.
- Advanced Aerial Mobility: Network Design and Multimodal Planning; Airspace Management of Integrated National Airspace System; Automated Air Traffic Management System; Community Integration, equity, and sustainability; Multimodal Connections with Emerging Technologies and Business Models.
- Air Transport Management: Applications of Machine Learning in Air Traffic Management; Air Traffic Flow Management; Air Transport Economics; Integrated Airspace with New Entrants; Green Aviation.
- **Resilient Cities:** Criticality Analysis of Roadway Network and Freight Transportation System; Integrated Mitigation and Restoration Planning for Transportation and Freight Movement; Resiliency of Interdependent Critical Infrastructures.

UAM Framework and Barriers

M1: Integrated Network Design and Demand Estimation for On-Demand UAM

Zhiqiang Wu and Yu Zhang

Zhiqiang Wu, **Yu Zhang^** (2021). Integrated Network Design and Demand Estimation of on-Demand Urban Air Mobility. Engineering, <u>https://doi.org/10.1016/j.eng.2020.11.007</u>.

Network Design and Travel Mode Choice

Vertiport Siting - Extended Single Allocation Hub-Spoke Problem

Decision Variables

 $y_k \in \{0,1\}$, takes a value of 1 if k is selected as a vertiport, 0 otherwise.

 $z^p \in \{0,1\}$, takes a value of 1 if trip p is through pure ground transportation, 0 otherwise.

 $x_{kd}^{p} \in \{0,1\}$, takes a value of 1 if trip p use multimodal UAM through vertiport k and $d \ (k \to d)$, 0 otherwise.

 $g_{ak}^{p} \& h_{ed}^{p} \in \{0,1\}$, takes a value of 1 if trip p access (egress) vertiport k (d) using travel mode a (e), 0 otherwise.

Optimal Vertiport Locations and Trip Allocations in The Tampa Bay Region

532 trips		•	Ve
of	= 0.20%		dis
266,734		•	No

- Vertiport demand unevenlydistributed
- Northern region under-served

Number of trips served by each vertiport

Vertiport Index	1	2	3	4	5	6	7	8	9	10
Demand	52	64	39	45	21	25	35	39	64	48
Vertiport Index	11	12	13	14	15	16	17	18	19	20
Demand	31	43	27	30	41	20	34	26	33	42
Vertiport Index	21	22	23	24	25	26	27	28	29	30
Demand	26	36	54	25	21	25	32	13	65	27

Outcomes of the Research

- Optimal locations of vertiports and diverted passenger demand
- Passenger allocation to vertiports
- Access and egress modes of each passenger

- Saved travel time and reduced system generalized cost
- Sensitivity analysis results:
 - Optimal number of vertiports to serve the region
 - Impacts of pricing schemes
 - Impacts of intermodal efficiency

M2: Automated Flight Planning of High-Density Urban Air Mobility Operations

- Hualong Tang, Yu Zhang[^], Hualong Vahid Mohmoodian, Hadi Charkhgard (2021). Automated Flight Planning of High-Density Urban Air Mobility. Transportation Research Part C: Emerging Technologies, <u>Volume 131</u>, October 2021, <u>https://doi.org/10.1016/j.trc.2021.103324</u>.
- Amazon Research Award 2021, "Design of an automated advanced air mobility flight planning system (AAFPS)".
- Tang, H., Zhang, Y., Post, J., (2022). Pre-departure flight planning to minimize operating cost for urban air mobility. AIAA Aviation Forum 2022.
- <u>https://www.youtube.com/watch?v=zF8tQGn-lhl</u>

Research Objectives

- Provide pre-departure flight planning services to commercial service providers.
 - ✓ Medium to high density (UML 4 and above^[1])
 - ✓ Conflict-free operation
 - ✓ Minimal operating cost
- Two critical questions:
 - 1. How should airspace be constructed?
 - 2. How are conflicts resolved at pre-departure planning stage?

Airspace Structure

- Structured airspace can greatly reduce the airspace complexity and lessen the ATC workload^[1].
- Low-structured architecture, especially free flight, spreads the traffic over the airspace so as to reduce the number of potential conflicts^[2].
- A layered concept with minimal structure at each layer was optimal in capacity, safety, and efficiency^[3]

[1] Hunter, G. and P. Wei. Service-oriented separation assurance for small UAS traffic management. in 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS). 2019. IEEE.

[2] Jardin, M.R., Analytical relationships between conflict counts and air-traffic density. Journal of guidance, control, and dynamics, 2005. 28(6): p. 1150-1156.
 [3] Sunil, E., et al. Metropolis: Relating airspace structure and capacity for extreme traffic densities. in Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar (ATM2015), Lisbon (Portugal), 23-26 June, 2015. 2015. FAA/Eurocontrol.

Automated UAM Flight Planning System

- Low-altitude
 Airspace
 Management
 System (LAMS):
 route network
 generation
- Low-altitude Traffic Management System (LTMS): conflict detection and resolution

Low-altitude Airspace Management System (LAMS)

 Construct a 3D GIS map of the region of interest with geographic and LIDAR data. A flyable airspace can be determined by the map and corresponding regulations.

K-means

Points with same density

UAM Operations Environment (UOE)

Low-altitude Airspace Management System (LAMS)

2) Construct visibility graphs for each origin-destination pair at different flight levels.

Why visibility graphs?

- Minimal nodes and edges
- The shortest path is among the candidate paths on visibility graph

3) Obtain the shortest path of each OD pair at each flight level.

Low-altitude Traffic Management System (LTMS)

LTMS is designed for detecting and resolving conflicts.

Nash Social Welfare Program (NSWP)

Lakeland

Mulb errs

Outcomes of the Research

- Pre-departure conflict free 4D trajectories for highdensity UAM operations
 - Flight level assignment
 - Departure delay (limited)
 - Local speed control

- Ensure the fairness among different operators
 - Market share
 - Flight distance
 - Operational times

M2.A. Dynamic Procedures for the Integration of UAM at Commercial Airports

Three vertiports at Tampa International Airport

VTOL Routes from/to Vertiport 1 -Clearance 75 ft

VTOL Routes from/to Vertiport 2 - Clearance 100 ft

VTOL Routes from/to Vertiport 3 -Clearance 100 ft

- Identify vetiports
 on or near airport
- Airport Modeling of Current Manned Operations
- VTOL Route Design – Rapidly Exploring Random Tree RRT Algorithm
- Case study -Tampa International Airport (TPA)

M3: A Simulation Platform for eVTOL Operation Performance and Service Quality Evaluation of the On-Demand Advanced Air Mobility (AAM-SIM)

Sketch of a Vertiport

Take-off and Landing Pad

- Passenger arrivals to vertiports
- Passenger assignments to eVTOLs

Illustration of Simulation

M6: Environmental Impact Analysis of Future on-Demand UAM

Energy to Emission

UNIVERSITY of

SOUTH FLORIDA

Comparison Outcome of Case Study Region

		CO2	CH4	N2O	CO2e	NOx	SO ₂	PM2.5
Pure Ground		4,147.739	0.179	0.037	4,163.329	4.276	0.020	0.132
	eVTOL	4,090.459	0.290	0.039	4,109.176	1.558	1.219	0.281
Multi	Access	451.109	0.020	0.004	452.810	0.391	0.002	0.013
modal UAM	Egress	499.995	0.022	0.005	501.875	0.339	0.002	0.013
	In Total	5,041.564	0.332	0.047	5,063.956	2.288	1.224	0.306
Difference		893.825	0.152	0.010	900.627	-1.987	1.204	0.174
% Difference		21.55%	84.99%	26.95%	21.63%	-46.48%	5957.19%	131.33%

Demonstration of Selected Trips

Trip ID	Items	Distance (mi)	Time (min)	CO ₂ e	NO _x	SO ₂	PM _{2.5}
#159	Pure ground mode	26.2	43.9	6257.41	4.90	0.03	0.17
	Multimodal UAM	12.5	18.8	6019.42	4.03	1.52	0.40
	Difference	-13.7	-25.1	-238.00	-0.88	1.49	0.24
	Percent change	-52.42%	-57.22%	-3.80%	-17.89%	5484.71%	142.21%
#351	Pure ground mode	35.5	44.4	8484.18	6.65	0.04	0.22
	Multimodal UAM	17.2	17.6	7121.33	2.93	1.85	0.45
	Difference	-18.3	-26.8	-1362.85	-3.72	1.81	0.22
	Percent change	-51.63%	-60.31%	-16.06%	-55.91%	4911.42%	98.17%
#459	Pure ground mode	44.4	47.5	10605.83	8.31	0.05	0.28
Brandon	Multimodal UAM	19.2	17.9	7771.54	3.23	2.03	0.49
	Difference	-25.2	-29.6	-2834.29	-5.09	1.98	0.21
	Percent change	-56.78%	-62.41%	-26.72%	-61.20%	4302.60%	73.90%

UNIVERSITY OF

Highly Dependent on Energy Sources for Electricity Generation

SOUTH FLORIDA

Summary of AAM/UAM Research at USF

Shared Urban Air Mobility Evaluation Tool (SUAMET)

Ongoing Efforts

- (M4) Enhancing simulation tool by including eVTOL dynamic rebalancing
- (M1+) Understanding induced demand of emerging UA: Stated preference survey & Natural language processing
- (M7+) Opportunities of improving transportation equity with emerging UAM

Implementation

 Impacts of emerging AAM/UAM to regional transportation system (Tampa Bay Region)

Thank you for your attention!

yuzhang@usf.edu http://www.sum-lab.org

