Urban Airspace and eVTOL Design Concepts - Challenges

Session: Safe and Equitable Airspace and Flight Operations

Jasenka Rakas University of California, Berkeley

Future of Aviation Conference UC Berkeley Institute of Transportation Studies August 4, 2022

Urban Airspace and eVTOL Design Concepts -Challenges

Urban airspace design concepts:

- Government-led initiatives: NASA, FAA, MITRE, SESAR U-SPACE, DLR U-SPACE, METROPOLIS, ONERA, Singapore, China's Civil UAS Aviation Operation Management System (UOMS), Japan Aerospace Exploration Agency (JAXA)-the UAS traffic management (UTM)
- Industry-led initiatives: Amazon, Airbus, Boeing, Embraer-X, former Uber Elevate

eVTOL design concepts

• Over 500 types, across the globe

FAA Airspace Classification

German DLR

Separation = MAX (Minimum Distance, Aircraft Safety Bound)

NASA - experimental

Airspace structures by Airbus: Basic Flight, Free Route, Corridors, and Fixed Route

TUBES

Structure of airspace is important!

Free flight

Structure of airspace is important!

Strict trajectories

LESS STRUCTURE

Clearance depends on these selected variables:

15

- (a) obstacle avoidance;
- (b) wind gusts;
- (c) privacy;
- (d) noise;
- (e) clearance envelope;
- (f) resulting airspace.

Factors that impact airspace design

Group	Factor						
		Separation					
		Sense-and-avoid					
	Object avoidance	Aircraft avoidance					
Safety		Static Geofence					
		Dynamic Geofence					
	Wind gusts						
	Weather						
	Noise						
Social	Privacy						
	Visual pollution						
	Air Traffic Management						
System	Communication, Navigation, and Surveillance						
	Capacity						
	Critical aircraft						
Vehicle	Autonomy						
	Energy efficiency						

Berke

Review of airspace concepts

		NASA UTM	NASA UTFC	MITRE	SESAR U- Space	DLR U-Space	Metropolis-a [24]	Metropolis-b	Metropolis-c	Metropolis-d	
Country/Region			USA	USA	USA	EU	Germany	Netherlands	Netherlands	Netherlands	Netherlands
Structure		Preapproved Trajectories	Skylanes	Preapproved Trajectories	Preapproved Trajectories	Cells	Full mix	Layers	Zones	Tubes	
	Object avoidance	Static Geofence	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	~
		Dynamic Geofence	~	~	\checkmark	~	✓	~	×	\checkmark	~
Safety		Sense and avoid	Not required	Required	Required	Not required	Not required	Required	Not required	Not required	Not required
		Separation	Static	Static	Static	Static	Dynamic	Static	Static	Static	Static
	Wind gusts		×	×	×	×	√	×	×	×	×
Weather		√	×	√	√	~	~	~	~	√	
	Noise										
	Noise		×	×	×	×	×	×	×	×	×
Social	Noise Privacy		× ×	× ×	× ×	*	*	× ×	× ×	× ×	*
Social	Noise Privacy Visual pollutio	on	* * *	× × ×	× × ×	* * *	* * *	× × ×	* * *	* * *	* * *
Social	Noise Privacy Visual pollutio Airspace Man	on agement	× × × Centralized	× × × Centralized	× × × Centralized	× × × Centralized	× × × Centralized	× × × Centralized	× × × Centralized	× × × Centralized	× × × Centralized
Social System	Noise Privacy Visual pollutio Airspace Man CNS	on agement	× × Centralized GPS, ADS-B	× × Centralized Not specified	× × Centralized Not specified	× × Centralized LTE, FLARM, ADS-B	× × Centralized LTE, FLARM, ADS-B	× × Centralized LTE, FLARM, ADS-B	× × Centralized LTE, FLARM, ADS-B	× × Centralized LTE, FLARM, ADS-B	× × Centralized LTE, FLARM, ADS-B
Social System	Noise Privacy Visual pollutio Airspace Man CNS Capacity	on agement	× × Centralized GPS, ADS-B High	× × Centralized Not specified Low	× × Centralized Not specified High	× × Centralized LTE, FLARM, ADS-B High	× × Centralized LTE, FLARM, ADS-B High	× × Centralized LTE, FLARM, ADS-B High	× × Centralized LTE, FLARM, ADS-B High	× × Centralized LTE, FLARM, ADS-B Medium	× × Centralized LTE, FLARM, ADS-B Low
Social System	Noise Privacy Visual pollutio Airspace Man CNS Capacity	on agement Manned	× × Centralized GPS, ADS-B High ×	× × Centralized Not specified Low ×	× × Centralized Not specified High √	× × Centralized LTE, FLARM, ADS-B High √	× × Centralized LTE, FLARM, ADS-B High √	× × Centralized LTE, FLARM, ADS-B High √	× × Centralized LTE, FLARM, ADS-B High √	× × Centralized LTE, FLARM, ADS-B Medium ✓	× × Centralized LTE, FLARM, ADS-B Low ✓
Social System	Noise Privacy Visual pollutio Airspace Man CNS Capacity Automation	on agement Manned Unmanned	× × Centralized GPS, ADS-B High × √	× × Centralized Not specified Low × √	× × Centralized Not specified High ✓	× × Centralized LTE, FLARM, ADS-B High √	× × Centralized LTE, FLARM, ADS-B High √ √	× × Centralized LTE, FLARM, ADS-B High ✓	× × Centralized LTE, FLARM, ADS-B High ✓	× × Centralized LTE, FLARM, ADS-B Medium ✓	× × Centralized LTE, FLARM, ADS-B Low ✓
Social System	Noise Privacy Visual pollutio Airspace Man CNS Capacity Automation Critical aircraf	on agement Manned Unmanned t	× × Centralized GPS, ADS-B High × ×	× × Centralized Not specified Low × √ \$UAS	× × Centralized Not specified High ✓ Various	× × Centralized LTE, FLARM, ADS-B High ✓ Various	× × Centralized LTE, FLARM, ADS-B High ✓ Various	× × Centralized LTE, FLARM, ADS-B High ✓ Various	× × Centralized LTE, FLARM, ADS-B High ✓ Various	× × Centralized LTE, FLARM, ADS-B Medium ✓ ✓ Various	× × Centralized LTE, FLARM, ADS-B Low ✓ Various

47

Vehicle

Currently, there are over 500 new air vehicle designs.

Home > eVTOL Aircraft Directory

eVTOL Aircraft Directory

Welcome to the World eVTOL Aircraft Directory, first started in 2016 when there were only a half-dozen known designs. Here, we have categorized all known electric and hybrid-electric vertical takeoff and landing (eVTOL) concepts.

Vectored Thrust

An eVTOL aircraft that uses <u>any</u> of its thrusters for lift <u>and</u> cruise.

1. A2-Cal Aptos Blue

2. A³ Vahana (defunct)

- ACS Aviation
- 4. Advanced System Engineering FIPSI BX4

https://evtol.news/aircraft 5_Advanced System Engineering - FIPSI WX4

Lift + Cruise

Completely independent thrusters used for cruise vs. for lift without any thrust vectoring.

1. Aergility ATLIS

2. Aerial Vehicle Automation Winged X8

- 3. AeroMobil 5.0
- 4. Ascendance Flight Technologies Atea
- 5 Aurora Flight Sciences Pegasus PAV

Types of eVTOL

Vectored Thrust

An eVTOL aircraft that uses any of its thrusters for lift and cruise. It has a wing for an efficient cruise and uses the same propulsion system for both hover and cruise.

Wingless (Multicopter)

No thruster for cruise – only for lift. They are multirotors. They have large disk actuator surface which makes them efficient in hover, but they do not have a wing for an efficient cruise. Suited for short-range operations in cities where they can fly over traffic jams.

Lift + Cruise

Also aircraft with wings. Completely independent thrusters used for cruise vs. for lift without any thrust vectoring.

Electric Rotorcraft

An eVTOL aircraft that utilizes a helicopter frame plus a carrying wing.

UC Berkeley eVTOL Database

File Edit View Insert Format Data Tools Add-ons Help Last edit was made 5 days ago by Jeffrey Jeung

.

D

E

F

🇠 🚈 🖶 | 100% 🔻 💲 % .0_ .00_ 123 - Default (Ari...

- Z + ♥ lim E @ + ♥ + H + + = =

н

.

J

K

G

N12	- fx		
	A	Б	С
1	Vehicle Name	Capacity	Height (ft)
2	A2-Cal Aptos Blue	3	

1	Vehicle Name	Capacity	Height (ft)	Wingspan (ft)	Tip-to-Tip (ft)	Max Gross Takeoff Wt (lb)	Useful Load (lb)	Range (mi)	Altitude (ft)	Cruise Speed (mph)	Flight Time (min)	Fuel Type
2	A2-Cal Aptos Blue	3		16		2000		280		137		Electric
3	ACS Aviation	2				2204		186		138	90	Electric
4	Advanced System Engineering - FIPSI BX4	2				1390	400	30		45		Hybrid
5	aeroG Aviation aG-4	10	17.6	48.6	41.1							Hybrid
6	AirspaceX MOBi	4	10	40	30		440	64.6		149.6		Hybrid
7	Archer	5				7000		60	2000	150		Electric
8	Autonomous Flight Y6S	2						80.7	1510	70.2		Electric
9	Baaz B5	5		44.3	25.6		1323	124		186		Electric
10	Bartini Flying Car	4	5.6	14.8	17.1	2425	882	93	3300	186	30	Electric
11	Bell Nexus 6HK	4		40	40	6000		150		179		Hybrid
12	Beta Technologies (prototype)	2		35				150		172		Electric
13	Detroit Flyinc Cars WD-1	2	6.25	26	16	1500	500	400		125		Hybrid
14	Dufour aEro2	2						497		199		Hybrid
15	Dufour aEro3	7						497		217		Hybrid
16	Eco'Trip	2	6.5	9.5	9.8	1213	441			71	60	Electric
17	EVA X01	2	8.8		14.1		551	155.3		248.5		Electric
18	EVA Valkyr	2		9.8	3.3		22			124	60	Electric
19	Grug Group SBX	4								186	90	Electric
20	HopFlyt Venturi	4		26	24			115		138		Electric
21	Hoversurf Formula (No wing)	1						186		155	72	Electric
22	JAXA Hornisse 2B	2	1.6	6.5	7.5							Unknown
23	Jetoptera J2000	1				2000	400	200	15000	200		Other
24	Joby Aviation S4	5	7.8	35	24	4800	800	150	15000	200	66	Electric
25	Kari Pav	5		23	20	1433	220	37		124		Electric
26	KineticCo Aerospace and Advanced Technologies	2								205	240	Hybrid
27	Kitty Hawk Heaviside	1		20				100		220		Electric
28	Kronstadt Air Taxi	4						93		124		Hybrid
29	Lilium Jet	5				1410	440	186		186	60	Electric

+ 🗉 Vectored Thrust 🗸 Lift + Cruise 🗸 Wingless 👻 Electric Rotorcraft 👻

Performance Metrics (for infrastructure sizing)

- Range (miles)
- Altitude (feet)
- Cruise Speed (miles per hour)
- Flight Time (minutes)
- Seating Capacity (# of passengers)
- Maximum Takeoff Weight (MTOW) (pounds)
- Useful Load (pounds)
- Size: height, wingspan or width, length (feet)

Performance Metric Correlations

Performance Metric Correlations

Summary

- Diverse airspace concepts
- Diverse air vehicle design concepts

How many AAM airspace concepts will be used in the future?

How will you determine a design (i.e. critical) eVTOL air vehicle?

